skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leroux, Shawn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Environmental contamination is one of the major drivers of ecosystem change in the Anthropocene. Toxic chemicals are not constrained to their source of origin as they cross ecosystem boundaries via biotic (e.g., animal migration) and abiotic (e.g., water flow) vectors. Meta‐ecology has led to important insights on how spatial flows or subsidies of matter across ecosystem boundaries can have broad impacts on local and regional ecosystem dynamics but has not yet addressed the dynamics of pollutants in recipient ecosystems. Incorporating meta‐ecosystem processes (i.e., flux of materials across ecosystem boundaries) into contaminant dynamics can elucidate how contaminants may reverberate among local food chains. Here, we derive a modeling framework to predict how spatial ecosystem fluxes can influence contaminant dynamics and how this influence is dependent on the type of ecosystem flux (e.g., herbivore movement vs. abiotic chemical flows). We mix an analytical and numerical approach to analyze our integrative model which couples two subcomponents that have previously been studied independently of each other—an ecosystem model and a contaminant model. We observe an array of dynamics for how chemical concentrations change with increasing nutrient input and loss rate across trophic levels. When we tailor our range of chemical parameter values (e.g., environmental uptake of contaminant and assimilation efficiency of the contaminant) to specific organic chemicals, our results demonstrate that increasing nutrient input rates can lead to trophic dilution in pollutants such as polychlorinated biphenyls across trophic levels. However, increasing nutrient loss rate causes an increase in the concentrations of chemicals across all trophic levels. A sensitivity analysis demonstrates that nutrient recycling is an important ecosystem process impacting contaminant concentrations, generating predictions to be addressed by future empirical studies. Importantly, our model demonstrates the utility of our framework for identifying drivers of contaminant dynamics in connected ecosystems including the importance that (1) ecosystem processes and (2) movement, especially movement of lower trophic levels, have on contaminant concentrations. 
    more » « less
  2. Lopez_Bianca (Ed.)
    Rivers and streams contribute to global carbon cycling by decomposing immense quantities of terrestrial plant matter. However, decomposition rates are highly variable and large-scale patterns and drivers of this process remain poorly understood. Using a cellulose-based assay to reflect the primary constituent of plant detritus, we generated a predictive model (81% variance explained) for cellulose decomposition rates across 514 globally distributed streams. A large number of variables were important for predicting decomposition, highlighting the complexity of this process at the global scale. Predicted cellulose decomposition rates, when combined with genus-level litter quality attributes, explain published leaf litter decomposition rates with high accuracy (70% variance explained). Our global map provides estimates of rates across vast understudied areas of Earth and reveals rapid decomposition across continental-scale areas dominated by human activities. 
    more » « less
  3. River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale. 
    more » « less